12.4 Videos Guide

12.4a

•

The cross product: Let
$$\mathbf{a} = \langle a_1, a_2, a_3 \rangle$$
 and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$
 $\circ \mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = (a_2b_3 - a_3b_2)\mathbf{i} - (a_1b_3 - a_3b_1)\mathbf{j} + (a_1b_2 - a_2b_1)\mathbf{k}$

 \circ **a** × **b** is orthogonal to both **a** and **b**

Exercise:

• Find the cross product $\mathbf{a} \times \mathbf{b}$ for $\mathbf{a} = \langle 2, -1, 5 \rangle$ and $\mathbf{b} = \langle -4, 3, 8 \rangle$.

12.4b

- Geometric applications and interpretations of the cross product
 - $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin \theta$, where θ is the angle between \mathbf{a} and \mathbf{b}
 - If **a** and **b** are parallel, then $\mathbf{a} \times \mathbf{b} = \mathbf{0}$, the zero vector
 - \circ $|\mathbf{a} \times \mathbf{b}|$ gives the area of a parallelogram formed by \mathbf{a} and \mathbf{b}
 - Scalar triple product: $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$
 - $|\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})|$ gives the volume of a parallelepiped with edges \mathbf{a} , \mathbf{b} , and \mathbf{c}

Exercises:

12.4c

• Find the area of the parallelogram with vertices P(1, 0, 2), Q(3, 3, 3), R(7, 5, 8), and S(5, 2, 7).

12.4d

• Find a nonzero vector orthogonal to the plane through the points P(0, 0, -3), Q(4, 2, 0), and R(3, 3, 1), and (b) find the area of triangle PQR.